Improve Speech Enhancement Using Weiner Filtering

نویسنده

  • S.China Venkateswarlu
چکیده

Speech enhancement aims to improve speech quality by using various algorithms. It may sound simple, but what is meant by the word quality. It can be at least clarity and intelligibility, pleasantness, or compatibility with some other method in speech processing. Wiener filter are rather simple and workable, but after the estimation of the background noise, one neglects the fact that the signal is actually speech. Furthermore, the phase component of the signal is left untouched. However, this is perhaps not such a bad problem; after all, human ear is not very sensitive to phase changes. The third restriction in spectral subtraction methods is the processing of the speech signal in frames, so the Proceeding from one frame to another must be handled with care to avoid discontinuities. Noise reduction is a key-point of speech enhancement systems in hands-free communications. A number of techniques have been already developed in the frequency domain such as an optimal short-time spectral amplitude estimator proposed by Ephraim and Malah including the estimation of the a priori signal-to-noise ratio. This approach reduces significantly the disturbing noise and provides enhanced speech with colorless residual noise. In this paper, we propose a technique based on a Wiener filtering under uncertainty of signal presence in the noisy observation. Two different estimators of the a priori signal-to-noise ratio are tested and compared. The main interest of this approach comes from its low complexity. In this paper we demonstrate the application of weiner filter for a speech signal using Matlab 7.1 and signal processing toolbox.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

Gaussian Mixture Models (GMMs) of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD) or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equatio...

متن کامل

Speech Enhancement by Modified Convex Combination of Fractional Adaptive Filtering

This paper presents new adaptive filtering techniques used in speech enhancement system. Adaptive filtering schemes are subjected to different trade-offs regarding their steady-state misadjustment, speed of convergence, and tracking performance. Fractional Least-Mean-Square (FLMS) is a new adaptive algorithm which has better performance than the conventional LMS algorithm. Normalization of LMS ...

متن کامل

Speech Enhancement using Markov M

It has been shown that the Iterative Weiner Filtering (IWF) requires both intra-frame and inter-frame constraints to ensure that the enhanced speech spectra possess natural characteristics of speech. One automated way to apply the intra-frame constraints is Codebook Constrained Wiener Filtering (CCWF). In the present work, we propose a new method of imposing the inter-frame constraints based on...

متن کامل

Hybrid Filtering: an Approach for Speech Enhancement

The paper presents speech enhancement scheme for suppression of different background noises. The objective of speech enhancement is to improve the quality of the processed speech. This paper also investigate the use of two different transforms for speech enhancement. Speech enhancement using wiener filtering approach is presented using transforms DFT and DCT. The type of transform shows differe...

متن کامل

A New Shuffled Sub-swarm Particle Swarm Optimization Algorithm for Speech Enhancement

In this paper, we propose a novel algorithm to enhance the noisy speech in the framework of dual-channel speech enhancement. The new method is a hybrid optimization algorithm, which employs the  combination of  the  conventional θ-PSO and the shuffled sub-swarms particle optimization (SSPSO) technique. It is known that the θ-PSO algorithm has better optimization performance than standard PSO al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011